In vivo Distribution and Clearance of Purified Capsular Polysaccharide from Burkholderia pseudomallei in a Murine Model
نویسندگان
چکیده
Burkholderia pseudomallei is the causative agent of melioidosis, a severe infection prominent in northern Australia and Southeast Asia. The "gold standard" for melioidosis diagnosis is bacterial isolation, which takes several days to complete. The resulting delay in diagnosis leads to delayed treatments, which could result in death. In an attempt to develop better methods for early diagnosis of melioidosis, B. pseudomallei capsular polysaccharide (CPS) was identified as an important diagnostic biomarker. A rapid lateral flow immunoassay utilizing CPS-specific monoclonal antibody was developed and tested in endemic regions worldwide. However, the in vivo fate and clearance of CPS has never been thoroughly investigated. Here, we injected mice with purified CPS intravenously and determined CPS concentrations in serum, urine, and major organs at various intervals. The results indicate that CPS is predominantly eliminated through urine and no CPS accumulation occurs in the major organs. Immunoblot analysis demonstrated that intact CPS was excreted through urine. To understand how a large molecule like CPS was eliminated without degradation, a 3-dimenational structure of CPS was modeled. The predicted CPS structure has a rod-like shape with a small diameter that could allow it to flow through the glomerulus of the kidney. CPS clearance was determined using exponential decay models and the corrected Akaike Information Criterion. The results show that CPS has a relatively short serum half-life of 2.9 to 4.4 hours. Therefore, the presence of CPS in the serum and/or urine suggests active melioidosis infection and provides a marker to monitor treatment of melioidosis.
منابع مشابه
Role for the Burkholderia pseudomallei capsular polysaccharide encoded by the wcb operon in acute disseminated melioidosis.
The capsular polysaccharide of Burkholderia pseudomallei is an essential virulence determinant that is required for protection from host serum cidal activity and opsonophagocytosis. In this study, the immune response directed against a B. pseudomallei capsule mutant (JW270) was investigated in an acute respiratory murine model. JW270 was significantly attenuated in this model ( approximately 2 ...
متن کاملProkaryotic expression, purification and immunogenicity analysis of CpsD protein from Streptococcus iniae
Streptococcus iniae is a major cause of serious bacterial infections in both fish and human beings. Capsular polysaccharide (CPS) of S. iniae is vital to evade phagocytic clearance of the host and serves as an important protective antigen of S. iniae infection in aquatic animals. The CpsD gene was determined to be highly conservative in capsule polysaccharide operon. Prokaryotic expression of t...
متن کاملMOLECULAR CHARACTERIZATION AND OPTIMIZATION OF VI-CAPSULAR POLYSACCHARIDE OF SALMONELLA TYPHI TY6S PRODUCTION IN BIOREACTOR
The role of Vi-capsular polysaccharide (Vi-CPS) in human immunity against infection caused by Salmonella typhi is well known. The downstream process of purification generally causes depolymerization of Vi-CPS to a nonimmunogenic low molecular weight form. In the present study, a standard strain of Sal. typhi Ty6s was grown under submerge cultural conditions in a pilot-plant scale of 90 Liter fe...
متن کاملDevelopment of capsular polysaccharide-based glycoconjugates for immunization against melioidosis and glanders
Burkholderia pseudomallei and Burkholderia mallei, the etiologic agents of melioidosis and glanders, respectively, cause severe disease in humans and animals and are considered potential agents of biological warfare and terrorism. Diagnosis and treatment of infections caused by these pathogens can be challenging and, in the absence of chemotherapeutic intervention, acute disease is frequently f...
متن کاملDetection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant.
Burkholderia pseudomallei, the etiologic agent of melioidosis, is responsible for a broad spectrum of illnesses in humans and animals particularly in Southeast Asia and northern Australia, where it is endemic. Burkholderia thailandensis is a nonpathogenic environmental organism closely related to B. pseudomallei. Subtractive hybridization was carried out between these two species to identify ge...
متن کامل